

Universal MEMS Seismometer

PI: Karl Yee / JPL

New Science Enabled:

The UMS is the first high sensitivity seismometer that:

- · Will be deployable in extreme environments
- Will be deployable on rough landers and impactors, thus enabling deployment of a low cost seismic sense network

<u>Target Bodies</u>: all future rocky moon / planet missions (e.g. ocean worlds landers, Europa lander, Venus in-situ explorer)

Key Capabilities:

- High sensitivity (noise floor <2m/s²/√hz, bandwidth: 0.2-20hz)
- Extreme temperature (+300C to -200C) tolerant
- High Shock (up to 29,000g's) tolerant
- High radiation tolerance
- Gravity / tilt insensitive
- · No sensitivity to external magnetic fields

Key Advantages over State of the Art:

... this enables turning a high frequency, low sensitivity micro seismometer into a low frequency, high sensitivity device that is still high shock tolerant and extreme environment robust:

... this, and the small size and power of such devices, enables seismic science to be performed on any lander (including rough landers and penetrators)

Path Forward:

- TRL advancement from 2-4 under PICASSO
- Pursue follow on NASA follow on funding (PSTAR, MATTISE, ColdTech, HotTech...)
- Pursue reimbursable funding (paper study currently funded by Chevron to determine benefits for oil and gas industry)

CoIs: Sharon Kedar (JPL), Steve Vance (JPL), Brent Blaes (JPL)